题目内容

已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有(  )
A.e2013f(-2013)<f(0),f(2013)<e2013f(0)
B.e2013f(-2013)<f(0),f(2013)>e2013f(0)
C.e2013f(-2013)>f(0),f(2013)<e2013f(0)
D.e2013f(-2013)>f(0),f(2013)>e2013f(0)
g(x)=
f(x)
ex
,则g(x)=
f′(x)ex-f(x)ex
e2x

因为f(x)>f'(x),所以g′(x)<0,所以函数g(x)为R上的减函数,
所以g(-2013)>g(0),
f(-2013)
e-2013
f(0)
e0
,所以e2013f(-2013)>f(0),
f(2013)
e2013
f(0)
e0
,所以f(2013)<e2013f(0).
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网