题目内容
设函数f(x)=ln(2x+3)+x2
(1)讨论f(x)的单调性;
(2)求f(x)在区间[-
,
]的最大值和最小值.
(1)讨论f(x)的单调性;
(2)求f(x)在区间[-
| 3 |
| 4 |
| 1 |
| 4 |
f(x)的定义域为(-
,+∞)
(1)f′(x)=
+2x=
当-
<x<-1时,f′(x)>0;
当-1<x<-
时,f′(x)<0;
当x>-
时,f′(x)>0
从而,f(x)在区间(-
,-1),(-
,+∞)上单调递增,在区间(-1,-
)上单调递减
(2)由(1)知f(x)在区间[-
,
]的最小值为f(-
)=ln2+
又f(-
)-f(
)=ln
+
-ln
-
=ln
+
=
(1-ln
)<0
所以f(x)在区间[-
,
]的最大值为f(
)=
+ln
.
| 3 |
| 2 |
(1)f′(x)=
| 2 |
| 2x+3 |
| 4x2+6x+2 |
| 2x+3 |
当-
| 3 |
| 2 |
当-1<x<-
| 1 |
| 2 |
当x>-
| 1 |
| 2 |
从而,f(x)在区间(-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)知f(x)在区间[-
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
又f(-
| 3 |
| 4 |
| 1 |
| 4 |
| 3 |
| 2 |
| 9 |
| 16 |
| 7 |
| 2 |
| 1 |
| 16 |
=ln
| 3 |
| 7 |
| 1 |
| 2 |
| 1 |
| 2 |
| 49 |
| 9 |
所以f(x)在区间[-
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 16 |
| 7 |
| 2 |
练习册系列答案
相关题目