题目内容
定义平面向量之间的一种运算“☉”如下:对任意的a=(m,n),b=(p,q),令a☉b=mq-np.下面说法错误的是( )
(A)若a与b共线,则a☉b=0
(B)a☉b=b☉a
(C)对任意的λ∈R,有(λa)☉b=λ(a☉b)
(D)(a☉b)2+(a·b)2=|a|2|b|2
【答案】
B
【解析】若a与b共线,有a☉b=mq-np=0,故选项A正确;
∵b☉a=pn-qm,
而a☉b=mq-np,
∴a☉b≠b☉a,故选项B错误;
∵(λa)☉b=λmq-λnp=λ(mq-np)=λ(a☉b),故选项C正确;
∵(a☉b)2+(a·b)2=(mq-np)2+(mp+nq)2=(m2+n2)(p2+q2)=|a|2|b|2,故选项D正确.
练习册系列答案
相关题目
定义平面向量之间的一种运算“⊙”如下:对任意的
=(m,n),
=(p,q),令
⊙
=mq-np,下面说法错误的是( )
| a |
| b |
| a |
| b |
A、若
| ||||||||||||
B、
| ||||||||||||
C、对任意的λ∈R,有(λ
| ||||||||||||
D、(
|
定义平面向量之间的一种运算“*”如下:对任意的
=(m,n),
=(p,q),令
*
=mq-np.给出以下四个命题:(1)若
与
共线,则
*
=0;(2)
*
=
*
;(3)对任意的λ∈R,有(λ
)*
=λ(
*
)(4)(
*
)2+(
•
)2=|
|2•|
|2.(注:这里
•
指
与
的数量积)则其中所有真命题的序号是( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| b |
| a |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| A、(1)(2)(3) |
| B、(2)(3)(4) |
| C、(1)(3)(4) |
| D、(1)(2)(4) |