题目内容
已知α,β是方程4x2-4tx-1=0(t∈R)的两个不等实根,函数f(x)=| 2x-t |
| x2+1 |
(Ⅰ)求g(t)=maxf(x)-minf(x);
(Ⅱ)证明:对于ui∈(0,
| π |
| 2 |
| 1 |
| g(tanu1) |
| 1 |
| g(tanu2) |
| 1 |
| g(tanu3) |
| 3 |
| 4 |
| 6 |
分析:(Ⅰ)先设α≤x1<x2≤β,则4x12-4tx1-1≤0,4x22-4tx2-1≤0,利用单调函数的定义证明f(x)在区间[α,β]上是增函数.从而求得函数f(x)的最大值与最小值,最后写出g(t)
(Ⅱ)先证:g(tanui)=
=
≥
=
(i=1,2,3)从而利用均值不等式与柯西不等式即得:
+
+
<
.
(Ⅱ)先证:g(tanui)=
| ||||
|
| ||
| 16+9cos2ui |
2
| ||
| 16+9cos2ui |
16
| ||
| 16+9cos2ui |
| 1 |
| g(tanu1) |
| 1 |
| g(tanu2) |
| 1 |
| g(tanu3) |
| 3 |
| 4 |
| 6 |
解答:解:(Ⅰ)设α≤x1<x2≤β,则4x12-4tx1-1≤0,4x22-4tx2-1≤0,∴4(
+
)-4t(x1+x2)-2≤0, ∴2x1x2-t(x1+x2)-
<0
则f(x2)-f(x1)=
-
=
又t(x1+x2)-2x1x2+2>t(x1+x2)-2x1x2+
>0 ∴f(x2)-f(x1)>0
故f(x)在区间[α,β]上是增函数.(3分)
∵α+β=t, αβ=-
,∴g(t)=maxf(x)-minf(x)=f(β)-f(α)=
=
=
(6分)
(Ⅱ)证:g(tanui)=
=
≥
=
(i=1,2,3)(9分)∴
≤
(16+9cos2ui)=
(16×3+9×3-9)
sin2ui)(15分)∵
sinui=1,且ui∈(0,
), i=1,2,3 ∴3
sin2ui≥(
sinui)2=1,而均值不等式与柯西不等式中,等号不能同时成立,∴
+
+
<
.(14分)
| x | 2 1 |
| x | 2 2 |
| 1 |
| 2 |
则f(x2)-f(x1)=
| 2x2-t | ||
|
| 2x1-t | ||
|
| (x2-x1)[t(x1+x2)-2x1x2+2] | ||||
(
|
又t(x1+x2)-2x1x2+2>t(x1+x2)-2x1x2+
| 1 |
| 2 |
故f(x)在区间[α,β]上是增函数.(3分)
∵α+β=t, αβ=-
| 1 |
| 4 |
| (β-α)[t(α+β)-2αβ+2] |
| α2β2+α2+β2+1 |
| ||||
t2+
|
8
| ||
| 16t2+25 |
(Ⅱ)证:g(tanui)=
| ||||
|
| ||
| 16+9cos2ui |
2
| ||
| 16+9cos2ui |
16
| ||
| 16+9cos2ui |
| 3 |
| i=1 |
| 1 |
| g(tanui) |
| 1 | ||
16
|
| 3 |
| i=1 |
| 1 | ||
16
|
| 3 |
| i=1 |
| 3 |
| i=1 |
| π |
| 2 |
| 3 |
| i=1 |
| 3 |
| i=1 |
| 1 |
| g(tanu1) |
| 1 |
| g(tanu2) |
| 1 |
| g(tanu3) |
| 3 |
| 4 |
| 6 |
点评:本题主要考查了不等式的证明、函数的最值及其几何意义,解答关键是利用函数单调性求最值及均值不等式与柯西不等式的灵活运用.
练习册系列答案
相关题目