题目内容

精英家教网如图,平面AC⊥平面AE,且四边形ABCD与四边形ABEF都是正方形,则异面直线AC与BF所成角的大小是
 
分析:以A为坐标原点,AF,AB,AD方向分别为X,Y,Z轴正方向建立空间坐标系,设正方形ABCD与正方形ABEF的边长均为1,求出异面直线AC与BF的方向向量,代入向量夹角公式,即可求出答案.
解答:解:以A为坐标原点,AF,AB,AD方向分别为X,Y,Z轴正方向建立空间坐标系
设正方形ABCD与正方形ABEF的边长均为1
则A(0,0,0),B(0,1,0),C(0,1,1),F(1,0,0)
AC
=(0,1,1),
BF
=(1,-1,0)
设异面直线AC与BF所成角为θ,
则cosθ=|
AC
BF
|
AC
|•|
BF
|
|=
1
2

∴θ=60°
故答案为:60°
点评:本题考查的知识点是异面直线及其所成的角,其中构造空间直角坐标系,将异面直线夹角问题转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关题目

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网