题目内容
函数f(x)=(
)x-log2x,正实数a,b,c成公比大于1的等比数列,且满足f(a)•f(b)•f(c)<0,若x0是方程f(x)=0的解,那么下列不等式中不可能成立的是( )
| 1 |
| 3 |
| A.x0<a | B.x0>b | C.x0<c | D.x0>c |
由于函数f(x)=(
)x-log2x在其定义域(0,+∞)上是减函数,
∵正实数a,b,c成公比大于1的等比数列,
∴0<a<b<c.
∵f(a)f(b)f(c)<0,
则f(a)<0,f(b)<0,f(c)<0,或者f(a)>0,f(b)>0,f(c)<0,
综合以上两种可能,恒有 f(c)<0,f(a)>0.
再由x0是方程f(x)=0的解,即f(x0)=0,故有 a<x0<c,
故x0 >c 不可能成立,
故选D.
| 1 |
| 3 |
∵正实数a,b,c成公比大于1的等比数列,
∴0<a<b<c.
∵f(a)f(b)f(c)<0,
则f(a)<0,f(b)<0,f(c)<0,或者f(a)>0,f(b)>0,f(c)<0,
综合以上两种可能,恒有 f(c)<0,f(a)>0.
再由x0是方程f(x)=0的解,即f(x0)=0,故有 a<x0<c,
故x0 >c 不可能成立,
故选D.
练习册系列答案
相关题目