题目内容
已知函数f(x)=2
sinxcosx+2cos2x-1(x∈R).
(1)求函数f(x)的最小正周期及在[0,
]上的单调递增区间;
(2)若f(x0)=
,x0∈[
,
],求cos2x0的值.
| 3 |
(1)求函数f(x)的最小正周期及在[0,
| π |
| 2 |
(2)若f(x0)=
| 6 |
| 5 |
| π |
| 4 |
| π |
| 2 |
(1)由数f(x)=2
sinxcosx+2cos2x-1,得
f(x)=
sin2x+cos2x=2sin(2x+
),
所以函数f(x)的最小正周期为π;
∵2kπ-
<2x+
<2kπ+
,k∈Z
∴x∈(kπ-
,kπ+
),k∈Z
又x∈[0,
],f(x)=2sin(2x+
)在[0,
]上的单调递增区间为(0,
);
(2)由(1)知,f(x0)=2sin(2x0+
),
∵f(x0)=
,
∴sin(2x0+
)=
,
由x0∈[
,
],得2x0+
∈[
,
].
从而cos(2x0+
)=-
=-
∴cos2x0=cos[(2x0+
)-
]
=cos(2x0+
)cos
+sin(2x0+
)sin
=
.
| 3 |
f(x)=
| 3 |
| π |
| 6 |
所以函数f(x)的最小正周期为π;
∵2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
∴x∈(kπ-
| π |
| 3 |
| π |
| 6 |
又x∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
(2)由(1)知,f(x0)=2sin(2x0+
| π |
| 6 |
∵f(x0)=
| 6 |
| 5 |
∴sin(2x0+
| π |
| 6 |
| 3 |
| 5 |
由x0∈[
| π |
| 4 |
| π |
| 2 |
| π |
| 6 |
| 2π |
| 3 |
| 7π |
| 6 |
从而cos(2x0+
| π |
| 6 |
1-sin2(2x0+
|
| 4 |
| 5 |
∴cos2x0=cos[(2x0+
| π |
| 6 |
| π |
| 6 |
=cos(2x0+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
3-4
| ||
| 10 |
练习册系列答案
相关题目