题目内容
(2013•大连一模).已知各项均为正数的数列{an}满足a1=1,an+1+an•an+1-an=0.
(Ⅰ)求证:数列{
}是等差数列;
(Ⅱ)求数列{
}前n项和Sn.
(Ⅰ)求证:数列{
| 1 |
| an |
(Ⅱ)求数列{
| 2n |
| an |
分析:(Ⅰ)an+1+an•an+1-an=0?
-
=1,利用等差数列的概念即可证得数列{
}是等差数列;
(Ⅱ)由(Ⅰ)知
=n•2n,Sn=1×21+2×22+…+n×2n,利用错位相减法即可求得数列{
}前n项和Sn.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(Ⅱ)由(Ⅰ)知
| 2n |
| an |
| 2n |
| an |
解答:解:(Ⅰ)∵an+1+an•an+1-an=0,
∴
=0,
∴
-
=1,(3分)
又
=1,
∴数列{
}是以1为首项,1为公差的等差数列.(4分)
∴
=1+(n-1)×1=n,an=
.(6分)
(Ⅱ)由(Ⅰ)知
=n•2n.
Sn=1×21+2×22+…+n×2n.①
2Sn=1×22+2×23+…+n×2n+1.②(9分)
由①-②得-Sn=21+22+…+2n-n×2n+1.
∴Sn=(n-1)2n+1+2.(12分)
∴
| an+1+an•an+1-an |
| an•an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
又
| 1 |
| a1 |
∴数列{
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| n |
(Ⅱ)由(Ⅰ)知
| 2n |
| an |
Sn=1×21+2×22+…+n×2n.①
2Sn=1×22+2×23+…+n×2n+1.②(9分)
由①-②得-Sn=21+22+…+2n-n×2n+1.
∴Sn=(n-1)2n+1+2.(12分)
点评:本题考查数列的求和,考查等差关系的确定,求得an=
是关键,突出考查错位相减法求和,属于中档题.
| 1 |
| n |
练习册系列答案
相关题目