题目内容
设数列{an} 对任意n∈N*和实数常数,有
=t-2,t∈R,a1=
(1)若{
}是等比数列,求{an} 的通项公式;
(2)设{bn}满足bn=(1-an)an,其前n项和Tn,求证:Tn>
•
.
| an-2an+1 |
| anan+1 |
| 1 |
| 3 |
(1)若{
| 1-an |
| an |
(2)设{bn}满足bn=(1-an)an,其前n项和Tn,求证:Tn>
| 2 |
| 3 |
| 2n-1 |
| 2n+1+1 |
(1)由
=t-2,t∈R,a1=
,
得
-1=2(
-1) +t•
-1=2,
∵{
}是等比数列,
∴
-1=2n,
得an=
.
(2)由bn=(1-an)an得bn=(1-
) •
=
<
-
,
前n项和Tn=b1+b2+…+bn
<
-
=
•
.
| an-2an+1 |
| anan+1 |
| 1 |
| 3 |
得
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
∵{
| 1-an |
| an |
∴
| 1 |
| an |
得an=
| 1 |
| 2n+1 |
(2)由bn=(1-an)an得bn=(1-
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 2n |
| (2n+1)2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
前n项和Tn=b1+b2+…+bn
<
| 1 |
| 3 |
| 1 |
| 2n+1+1 |
=
| 2 |
| 3 |
| 2n-1 |
| 2n+1+1 |
练习册系列答案
相关题目