题目内容

(2009•山东模拟)已知:向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),|
a
-
b
|=
2
2
5
,求:cos(α-β).
分析:直接由|
a
-
b
|=
2
2
5
⇒(
a
-
b
)2=
a
2
+
b
2
-2(
a
b
)=
8
25
,再结合|
a
|=|
b
|=1
,求出
a
b
=
21
25
,代入所求即可得到答案.
解答:解:由|
a
-
b
|=
2
2
5
⇒(
a
-
b
)2=
a
2
+
b
2
-2(
a
b
)=
8
25

又由条件得|
a
|=|
b
|=1

a
b
=
21
25

cos(α-β)=cosαcosβ+sinαsinβ=
a
b
=
21
25
点评:本题主要考查两角和与差的余弦函数以及平面向量数量积的性质及其运算律.考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网