题目内容
将函数f (x)=sin2x (x∈R)的图象向右平移
个单位,则所得到的图象对应的函数的一个单调递增区间是
- A.(-
,0) - B.(0,
) - C.(
,
) - D.(
,π)
B
分析:将函数f (x)=sin2x (x∈R)的图象向右平移
个单位,可得到g(x)=f (x-
)=sin2(x-
)=-cos2x (x∈R),求得其单调递增区间,再判断即可.
解答:f (x)=sin2x (x∈R)
g(x)=f (x-
)=sin2(x-
)=-cos2x=cos(2x+π )(x∈R),
∵g(x)=cos(2x+π )的单调递增区间由2kπ-π≤2x+π≤2kπ得:kπ-π≤x≤kπ-
(k∈Z).
∴当k=1时,0≤x≤
.而(0,
)⊆[0,
],
故选B.
点评:本题考查函数y=Asin(ωx+φ)的图象变换,关键在于掌握图象变换的规则(方向与单位),属于中档题.
分析:将函数f (x)=sin2x (x∈R)的图象向右平移
解答:f (x)=sin2x (x∈R)
∵g(x)=cos(2x+π )的单调递增区间由2kπ-π≤2x+π≤2kπ得:kπ-π≤x≤kπ-
∴当k=1时,0≤x≤
故选B.
点评:本题考查函数y=Asin(ωx+φ)的图象变换,关键在于掌握图象变换的规则(方向与单位),属于中档题.
练习册系列答案
相关题目