题目内容

(本小题满分12分)

如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。

(1)求椭圆的离心率;

(2)若平行四边形OCED的面积为, 求椭圆的方程.

 

【答案】

(1);(2)

【解析】

试题分析:(1) ∵焦点为F(c, 0), AB斜率为, 故CD方程为y=(x-c). 于椭圆联立后消去y得2x2-2cx-b2=0. ∵CD的中点为G(), 点E(c, -)在椭圆上,

∴将E(c, -)代入椭圆方程并整理得2c2=a2, ∴e =.

(2)由(Ⅰ)知CD的方程为y=(x-c),  b=c, a=c.

与椭圆联立消去y得2x2-2cx-c2=0.

∵平行四边形OCED的面积为S=c|yC-yD|=c

=c, ∴c=, a=2, b=. 故椭圆方程为

考点:本题考查椭圆的简单性质。

点评:求椭圆的离心率是常见题型,其主要思路是:找出a、b、c的一个关系式即可。此题就是根据点斜式表示出直线CD的方程,代入椭圆方程,进而可表示出CD的中点的坐标,则E点的坐标可得,代入椭圆方程即可求得a、b和c的关系式求得离心率e.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网