题目内容

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
2
)
,c=f(2),则a,b,c从大到小的排列顺序是
 
分析:f(x)满足f(x+1)=-f(x)?f(x+2)=-f(x+1)=f(x),即函数是以2为周期的周期函数由偶函数f(x),且在[-1,0]上单调递增,根据偶函数的性质可得函数在[0,1]单调递减而a=f(3)=f(1),b=f(
2
)
=f(2-
2
)
,c=f(2)=f(0)且0<2-
2
<1
,结合函数在[0,1]上的单调性可比较
解答:解:∵f(x)满足f(x+1)=-f(x)
∴f(x+2)=-f(x+1)=f(x)即函数是以2为周期的周期函数.
∵定义在R上的偶函数f(x),且在[-1,0]上单调递增根据偶函数的性质可得函数在[0,1]单调递减.
而a=f(3)=f(1),b=f(
2
)
=f(2-
2
)
,c=f(2)=f(0)且0<2-
2
<1

f(0)>f(2-
2
)>f(1)

故答案为:c>b>a
点评:本题主要考查了函数的奇偶性、单调性、周期性等函数性质的综合应用,要比较式子的大小,关键是先要根据周期性把所要比较的变量转化到一个单调区间,然后结合该区间的单调性进行比较.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网