题目内容
已知函数f(x)=2sin(2x+φ),若f(
)=
,则f(
)=______.
| π |
| 4 |
| 3 |
| 13π |
| 4 |
∵f(x)=2sin(2x+φ),f(
)=
,
∴2sin(2×
+φ)=
,
即2cosφ=
∴f(
)=2sin(2×
+φ)
=2sin(6π+
+φ)
=2sin(
+φ)
=2cosφ
=
.
故答案为:
.
| π |
| 4 |
| 3 |
∴2sin(2×
| π |
| 4 |
| 3 |
即2cosφ=
| 3 |
∴f(
| 13π |
| 4 |
| 13π |
| 4 |
=2sin(6π+
| π |
| 2 |
=2sin(
| π |
| 2 |
=2cosφ
=
| 3 |
故答案为:
| 3 |
练习册系列答案
相关题目