题目内容
两个等差数列an的和bn的前n项和分别为Sn和Tn,已知| Sn |
| Tn |
| 5n-9 |
| n+3 |
分析:分别令
等于1,2,3,4,利用等差数列的性质解得相应的t值,即可得到满足题意的正整数t的个数.
| 5n-9 |
| n+3 |
解答:解:当
=1即n=3时,
=
=
=
=1,则a2=b2,此时t=1;
当
=2即n=5时,
=
=
=
=2,则a3=2b3,此时t=2;
当
=3即n=9时,
=
=
=
=3,则a5=3b5,此时t=3;
当
=4即n=21时,
=
=
=
=4,则a11=4b11,此时t=4.
当
≥5时,解得的n不为正整数即t也不为正整数,所以满足题意的正整数t的个数是4
故答案为:4
| 5n-9 |
| n+3 |
| S3 |
| T3 |
| a1+a2+a3 |
| b1+b2+b3 |
| 3a2 |
| 3b2 |
| a2 |
| b2 |
当
| 5n-9 |
| n+3 |
| S5 |
| T5 |
| a1+a2+…+a5 |
| b1+b2+…+b5 |
| 5a3 |
| 5b3 |
| a3 |
| b3 |
当
| 5n-9 |
| n+3 |
| S9 |
| T9 |
| a1+a2+…+a9 |
| b1+b2+…+b9 |
| 9a5 |
| 9b5 |
| a5 |
| b5 |
当
| 5n-9 |
| n+3 |
| S21 |
| T21 |
| a1+a2+…+a21 |
| b1+b2+…+b21 |
| 21a11 |
| 21b11 |
| a11 |
| b11 |
当
| 5n-9 |
| n+3 |
故答案为:4
点评:考查学生掌握等差数列的前n项和的公式,灵活运用等差数列的性质解决实际问题.
练习册系列答案
相关题目