题目内容
已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0时,有
>0.
(1)证明函数f(x)在[-1,1]上单调递增;
(2)解不等式f(x+
)<f(1-x);
(3)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
| f(m)+f(n) |
| m+n |
(1)证明函数f(x)在[-1,1]上单调递增;
(2)解不等式f(x+
| 1 |
| 2 |
(3)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
| 查看本题解析需要登录 | |
| 查看解析 | 如何获取优点?普通用户:2个优点。 |
| 如何申请VIP用户?VIP用户:请直接登录即可查看。 | |
练习册系列答案
相关题目