题目内容
已知数列{an}的前n项和为Sn,a1=3,若数列{Sn+1}是公比为4的等比数列.
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设bn=
,n∈N*,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设bn=
| an+1 | (an+1-3)•Sn+1 |
分析:(Ⅰ)根据题意可求得Sn=4n-1,an=Sn-Sn-1(n≥2)可求得an;
(Ⅱ)将an+1,sn+1分别代入bn=
,用裂项法化为bn=
(
-
),可求得数列{bn}的前n项和Tn.
(Ⅱ)将an+1,sn+1分别代入bn=
| an+1 |
| (an+1-3)•Sn+1 |
| 1 |
| 3 |
| 1 |
| 4n-1 |
| 1 |
| 4n+1-1 |
解答:解:(Ⅰ)Sn+1=(S1+1)•4n-1=4n,∴Sn=4n-1,
当n≥2时,an=Sn-Sn-1=3•4n-1,且 a1=3,∴an=3•4n-1,
所以数列{an}的通项公式为an=3•4n-1.…(7分)
(Ⅱ)bn=
=
=
(
-
),Tn=b1+b2+…+bn=
(
-
)+
(
-
)+…+
(
-
)
=
(
-
)=
-
.…(12分)
当n≥2时,an=Sn-Sn-1=3•4n-1,且 a1=3,∴an=3•4n-1,
所以数列{an}的通项公式为an=3•4n-1.…(7分)
(Ⅱ)bn=
| an+1 |
| (an+1-3)•Sn+1 |
| 4n |
| (4n-1)(4n+1-1) |
| 1 |
| 3 |
| 1 |
| 4n-1 |
| 1 |
| 4n+1-1 |
| 1 |
| 3 |
| 1 |
| 41-1 |
| 1 |
| 42-1 |
| 1 |
| 3 |
| 1 |
| 42-1 |
| 1 |
| 43-1 |
| 1 |
| 3 |
| 1 |
| 4n-1 |
| 1 |
| 4n+1-1 |
=
| 1 |
| 3 |
| 1 |
| 41-1 |
| 1 |
| 4n+1-1 |
| 1 |
| 9 |
| 1 |
| 3(4n+1-1) |
点评:本题考查等比数列的通项公式与数列求和,求等比数列的通项时用公示法,求和时用裂项法,是重点也是难点,是中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |