题目内容

已知数列{an}的前n项和为Sn,a1=3,若数列{Sn+1}是公比为4的等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=
an+1(an+1-3)•Sn+1
,n∈N*,求数列{bn}的前n项和Tn
分析:(Ⅰ)根据题意可求得Sn=4n-1,an=Sn-Sn-1(n≥2可求得an
(Ⅱ)将an+1,sn+1分别代入bn=
an+1
(an+1-3)•Sn+1
,用裂项法化为bn=
1
3
(
1
4n-1
-
1
4n+1-1
)
,可求得数列{bn}的前n项和Tn
解答:解:(Ⅰ)Sn+1=(S1+1)•4n-1=4n,∴Sn=4n-1,
    当n≥2时,an=Sn-Sn-1=3•4n-1,且 a1=3,∴an=3•4n-1
    所以数列{an}的通项公式为an=3•4n-1.…(7分)
(Ⅱ)bn=
an+1
(an+1-3)•Sn+1
=
4n
(4n-1)(4n+1-1)
=
1
3
(
1
4n-1
-
1
4n+1-1
)
Tn=b1+b2+…+bn=
1
3
(
1
41-1
-
1
42-1
)+
1
3
(
1
42-1
-
1
43-1
)+…+
1
3
(
1
4n-1
-
1
4n+1-1
)

=
1
3
(
1
41-1
-
1
4n+1-1
)=
1
9
-
1
3(4n+1-1)
.…(12分)
点评:本题考查等比数列的通项公式与数列求和,求等比数列的通项时用公示法,求和时用裂项法,是重点也是难点,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网