题目内容
已知向量
=(cos θ,sin θ)和
=(
-sin θ,cos θ),θ∈(π,2π),且|
+
|=
,求cos(
+
)的值.
| m |
| n |
| 2 |
| m |
| n |
8
| ||
| 5 |
| θ |
| 2 |
| π |
| 8 |
| m |
| n |
| 2 |
|
| m |
| n |
(cosθ-sinθ+
|
=
4+2
|
=
4+4cos(θ+
|
=2
1+cos(θ+
|
由已知|
| m |
| n |
8
| ||
| 5 |
| π |
| 4 |
| 7 |
| 25 |
又cos(θ+
| π |
| 4 |
| θ |
| 2 |
| π |
| 8 |
所以cos2(
| θ |
| 2 |
| π |
| 8 |
| 16 |
| 25 |
∵π<θ<2π,∴
| 5π |
| 8 |
| θ |
| 2 |
| π |
| 8 |
| 9π |
| 8 |
∴cos(
| θ |
| 2 |
| π |
| 8 |
∴cos(
| θ |
| 2 |
| π |
| 8 |
| 4 |
| 5 |
练习册系列答案
相关题目