题目内容

已知向量
m
=(cos θ,sin θ)
n
=(
2
-sin θ,cos θ)
,θ∈(π,2π),且|
m
+
n
|=
8
2
5
,求cos(
θ
2
+
π
8
)
的值.
m
+
n
=(cosθ-sinθ+
2
,cosθ+sinθ)

|
m
+
n
|=
(cosθ-sinθ+
2
)
2
+(cosθ+sinθ)2

=
4+2
2
(cosθ-sinθ)

=
4+4cos(θ+
π
4
)

=2
1+cos(θ+
π
4
)

由已知|
m
+
n
|=
8
2
5
,得cos(θ+
π
4
)=
7
25

cos(θ+
π
4
)=2cos2(
θ
2
+
π
8
)-1

所以cos2(
θ
2
+
π
8
)=
16
25

∵π<θ<2π,∴
8
θ
2
+
π
8
8

cos(
θ
2
+
π
8
)<0

cos(
θ
2
+
π
8
)=-
4
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网