题目内容

在等差数列{an}中,a1=1,a7=4,数列{bn}是等比数列,且b1=6,b2=a3,则满足bna26<1的最小正整数n为


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    7
C
分析:等差数列{an}中,由a1=1,a7=4,解得d=;数列{bn}是等比数列,由b1=6,b2=a3,解得q=.由bna26<1,得到,由此能求出最小正整数n的值.
解答:∵等差数列{an}中,a1=1,a7=4,
∴1+6d=4,解得d=
∵数列{bn}是等比数列,且b1=6,b2=a3

解得q=
∵bna26<1,

整理,得
∴n-1>4,
解得n>5.
∴最小正整数n=6.
故选C.
点评:本题考查数列和不等式的综合,首先考查等差数列、等比数列的基本量、通项,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网