题目内容
(2009•宁波模拟)已知△ABC的三个顶点均在椭圆4x2+5y2=80上,且点A在y轴的正半轴上.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.
分析:(Ⅰ)设B(x1,y1),C(x2,y2)进而根据椭圆方程求得b和c,进而可求得A,F1的坐标,根据三角形的重心的性质可分别求得x1+x2和y1+y2,把B,C点代入椭圆方程后两式相减,进而求得直线BC的斜率,设出直线BC的方程,把B,C点坐标代入两式相加求得b,则直线BC方程可得.
(Ⅱ)由AB⊥AC,得
•
=x1x2+y1y2-4(y1+y2)+16=0(1).设直线BC方程为y=kx+b代入4x2+5y2=80,利用韦达定理结合(1)式,即可得直线BC过定点.
(Ⅱ)由AB⊥AC,得
| AB |
| AC |
解答:解:(Ⅰ)设B(x1,y1),C(x2,y2).
整理椭圆方程得
+
=1,∴短轴b=4,a=2
∴c=
=2,
则A(0,4 ),F1(2,0)
∴
=2,x1+x2=6
同理y1+y2=-4
又
+
=1,
+
=1,
两式相减可得4(x1+x2)+5(y1+y2)×k=0,
∴k=
(k为BC斜率)
令BC直线为:y=
x+b,则y1+y2=
(x1+x2)+2b
∴b=-
∴BC直线方程为:y=
x-
即5y-6x+28=0.…(7分)
(Ⅱ)由AB⊥AC,得
•
=x1x2+y1y2-4(y1+y2)+16=0 (1)
设直线BC方程为y=kx+b代入4x2+5y2=80,得(4+5k2)x2+10bkx+5b2-80=0
∴x1+x2=
,x1x2=
∴y1+y2=k(x1+x2)+2b=
,y1y2=k2x1x2+kb(x1+x2)+b2=
代入(1)式得,
=0,
解得b=4(舍)或b=-
故直线BC过定点(0,-
).
整理椭圆方程得
| x2 |
| 20 |
| y2 |
| 16 |
| 5 |
∴c=
| 20-16 |
则A(0,4 ),F1(2,0)
∴
| 0+x1+x2 |
| 3 |
同理y1+y2=-4
又
| x12 |
| 20 |
| y12 |
| 16 |
| x22 |
| 20 |
| y22 |
| 16 |
两式相减可得4(x1+x2)+5(y1+y2)×k=0,
∴k=
| 6 |
| 5 |
令BC直线为:y=
| 6 |
| 5 |
| 6 |
| 5 |
∴b=-
| 28 |
| 5 |
∴BC直线方程为:y=
| 6 |
| 5 |
| 28 |
| 5 |
即5y-6x+28=0.…(7分)
(Ⅱ)由AB⊥AC,得
| AB |
| AC |
设直线BC方程为y=kx+b代入4x2+5y2=80,得(4+5k2)x2+10bkx+5b2-80=0
∴x1+x2=
| -10kb |
| 4+5k2 |
| 5b2-80 |
| 4+5k2 |
∴y1+y2=k(x1+x2)+2b=
| 8k |
| 4+5k2 |
| 4b2-80k2 |
| 4+5k2 |
代入(1)式得,
| 9b2-32b-16 |
| 4+5k2 |
解得b=4(舍)或b=-
| 4 |
| 9 |
故直线BC过定点(0,-
| 4 |
| 9 |
点评:本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等,突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关题目