题目内容
已知函数f(x)=2cosx•(sinx-cosx)+1.
(1)求f(x)的最小正周期;
(2)当α∈[0,
],且f(α)=
时,求α的值.
(1)求f(x)的最小正周期;
(2)当α∈[0,
| π |
| 2 |
| 2 |
∵f(x)=2cosx•(sinx-cosx)+1
=2sinxcosx-(2cos2x-1)
=sin2x-cos2x
=
sin(2x-
).
(1)T=
=π
(2)∵f(α)=
sin(2α-
)=
∴sin(2α-
)=1
∵α∈[0,
]
∴2α-
∈[-
,
]
∴2α-
=
∴α=
.
=2sinxcosx-(2cos2x-1)
=sin2x-cos2x
=
| 2 |
| π |
| 4 |
(1)T=
| 2π |
| 2 |
(2)∵f(α)=
| 2 |
| π |
| 4 |
| 2 |
∴sin(2α-
| π |
| 4 |
∵α∈[0,
| π |
| 2 |
∴2α-
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
∴2α-
| π |
| 4 |
| π |
| 2 |
∴α=
| 3π |
| 8 |
练习册系列答案
相关题目