题目内容
若x、y满足约束条件
,则z=y-2x的最小值与最大值的和为
|
-6
-6
.分析:作出题中不等式组表示的平面区域,得如图的四边形OACB及其内部.再将目标函数z=-2x+y对应的直线进行平移,可得当x=0,y=3时,z取得最大值为3;当x=3,y=-3时,z取得最小值为-9.由此得到本题答案.
解答:解:作出不等式组
表示的平面区域,
得到如图的四边形OACB及其内部,其中
A(0,3),B(3,-3),C(3,6),O为坐标原点
设z=F(x,y)=y-2x=-2x+y,将直线l:z=-2x+y进行平移,
当l经过点A时,目标函数z达到最大值;
l经过点B时,目标函数z达到最大值
∴z最大值=F(0,3)=3,z最大值=F(3,-3)=-9
故答案为:-6
|
得到如图的四边形OACB及其内部,其中
A(0,3),B(3,-3),C(3,6),O为坐标原点
设z=F(x,y)=y-2x=-2x+y,将直线l:z=-2x+y进行平移,
当l经过点A时,目标函数z达到最大值;
l经过点B时,目标函数z达到最大值
∴z最大值=F(0,3)=3,z最大值=F(3,-3)=-9
故答案为:-6
点评:本题给出二元一次不等式组,求目标函数的最大值与最小值之和,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
练习册系列答案
相关题目
若x,y满足约束条件
( k为常数),则使z=x+3y的最大值为( )
|
| A、9 | ||
B、
| ||
| C、-12 | ||
| D、12 |