题目内容
写出过圆上一点的切线方程.
设直线方程为,则
解得.
切线方程为
已知圆,椭圆.(Ⅰ)若点在圆上,线段的垂直平分线经过椭圆的右焦点,求点的横坐标;(Ⅱ)现有如下真命题:“过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”;“过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”.据此,写出一般结论,并加以证明.
如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.
(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
已知圆,椭圆.
(Ⅰ)若点在圆上,线段的垂直平分线经过椭圆的右焦点,求点的横坐标;
(Ⅱ)现有如下真命题:
“过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”;
“过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”.
据此,写出一般结论,并加以证明.