题目内容

已知函数f(x)=ax+lnx
(1)试讨论f(x)的极值
(2)设g(x)=x2-2x+2,若对?x1∈(0,+∞),?x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.
(1)函数f(x)的定义域为(0,+∞),f′(x)=a+
1
x
=
ax+1
x

当a≥0时f'(x)>0,所以f(x)在(0,+∞)上为增函数,此时函数不存在极值.
当a<0时,由f'(x)>0,解得0<x<-
1
a
,此时函数递增.由f'(x)<0,解得x>-
1
a
此时函数递减.此时函数在x=-
1
a
处取得极小值.无极大值.
综上所述:当a≥0时,函数不存在极值.
当a<0时,函数在x=-
1
a
处取得极小值.无极大值.
(2)对?x1∈(0,+∞),?x2∈[0,1],使得f(x1)<g(x2),恒成立
由(1)知当a≥0时,f(x1)在(0,+∞)上为增函数,f(x1)无最大值;
当a<0时,f(x1)max?=f(-
1
a
)=-1+ln?(-
1
a
)=-1-ln?(-a)

又g(x2)=x22-2x2+2在x2∈[0,1]上单调递减,所以g(x2max?=g(0)=2.
所以
a<0
-1-ln(-a)<2
,解得a<-e-3
所以,实数a的取值范围是(-∞,-e-3).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网