题目内容
已知数列
中,
,
,数列
中,
,且点
在直线
上。
(1)求数列
的通项公式;
(2)求数列
的前
项和
;
(3)若
,求数列
的前
项和
;
【解析】第一问中利用数列的递推关系式![]()
,因此得到数列
的通项公式;
第二问中,
在
即为:![]()
即数列
是以
的等差数列
得到其前n项和。
第三问中,
又
![]()
,利用错位相减法得到。
解:(1)![]()
即数列
是以
为首项,2为公比的等比数列
![]()
……4分
(2)
在
即为:![]()
即数列
是以
的等差数列
![]()
……8分
(3)
又
![]()
![]()
①
②
①- ②得到
![]()
【答案】
(1)
(2)
(3)
练习册系列答案
相关题目