题目内容

反复抛掷一枚质地均匀的骰子,每一次抛掷后都记录下朝上一面的点数,当记录有三个不同点数时即停止抛掷,则抛掷五次后恰好停止抛掷的不同记录结果总数是


  1. A.
    360种
  2. B.
    840种
  3. C.
    600种
  4. D.
    1680种
B
分析:在3次不同点数是停止且在第5次停止,所以前4次抛掷有2种数字,第5次才出现第3种数字.由于在前4投中有任意2个不同的数出现故为C62,所以最后1投是在剩余4个数中任选1个数有C41,列举出四个位置的数字的情况,根据分步计数原理得到结果.
解答:在3次不同点数是停止且在第5次停止,所以前4次抛掷有2种数字,第5次才出现第3种数字.
由于在前4投中有任意2个不同的数出现故为C62=15,所以最后1投是在剩余4个数中任选1个数,有C41=4
在任取的前2个数中,假设为X和Y,有以下几种情况
①X Y Y Y,其可能性为4种
②X X Y Y,其可能性为6种
③X X X Y,其可能性为4种
所以最后全部的可能性有15×4(4+6+4)=840
故选B.
点评:本题考查排列组合的实际应用,解题的关键是分析好第五次正好停止所包含的事件,列举出前四种结果的不同的情况.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网