题目内容
在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,
![]()
求证:GM∥平面ABFE.
见解析
【解析】证明:方法一:因为EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,
![]()
所以∠EGF=90°,
△ABC∽△EFG.
由于AB=2EF,因此BC=2FG.
连接AF,由于FG∥BC,FG=
BC,
在?ABCD中,M是线段AD的中点,则AM∥BC,
且AM=
BC,因此FG∥AM且FG=AM,
所以四边形AFGM为平行四边形,因此GM∥FA.
又FA?平面ABFE,GM?平面ABFE,
所以GM∥平面ABFE.
方法二:因为EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,
![]()
∴∠EGF=90°,
△ABC∽△EFG.
由于AB=2EF,∴BC=2FG.
取BC的中点N,连接GN,
因此四边形BNGF为平行四边形,所以GN∥FB.
在?ABCD中,M是线段AD的中点,连接MN,
则MN∥AB.
∵MN∩GN=N,∴平面GMN∥平面ABFE.
又GM?平面GMN,∴GM∥平面ABFE.
练习册系列答案
相关题目