题目内容
| π |
| 2 |
| 2π |
| 3 |
| π |
| 3 |
(1)基向量
| AB |
| AC |
| AA1 |
| AO |
(2)求异面直线AO与BC所成的角;
(3)判定平面ABC与平面B1BCC1.
分析:设
=
,
=
,
=
(1)直接表示向量
=
+
=
+
(
+
)即可;
(2)求出
,
,利用它们的数量积,求异面直线AO与BC所成的角;
(3)取BC的中点E,连接AE,推出AE⊥BC,通过
•
=0得到AE⊥BB1,证明AE⊥平面BB1C1C,即可得到平面ABC与平面B1BCC1.
| AB |
| a |
| AC |
| b |
| AA1 |
| c |
(1)直接表示向量
| AO |
| AB |
| BO |
| AB |
| 1 |
| 2 |
| BC |
| CC1 |
(2)求出
| AO |
| BC |
(3)取BC的中点E,连接AE,推出AE⊥BC,通过
| AE |
| BB1 |
解答:解:设
=
,
=
,
=
(1)
=
+
=
+
(
+
)=
(
+
+
)
(2)由题意,可求得
2=
,|
|=
,
=
-
,
•
=1,
|
|=
,cos<
,
>=
,
∴异面直线AO与BC所成的角为arccos
(3)取BC的中点E,连接AE,则
=
(
+
)=
(
+
)
∵AB=AC,∴AE⊥BC,且
•
=
(
+
)•
=0,
∴AE⊥BB1
∴AE⊥平面BB1C1C,AE?平面ABC,
∴平面ABC与平面B1BCC1.
| AB |
| a |
| AC |
| b |
| AA1 |
| c |
(1)
| AO |
| AB |
| BO |
| AB |
| 1 |
| 2 |
| BC |
| CC1 |
| 1 |
| 2 |
| a |
| b |
| c |
(2)由题意,可求得
| AO |
| 3 |
| 2 |
| AO |
| ||
| 2 |
| BC |
| AC |
| AB |
| AO |
| BC |
|
| BC |
| 2 |
| AO |
| BC |
| ||
| 3 |
∴异面直线AO与BC所成的角为arccos
| ||
| 3 |
(3)取BC的中点E,连接AE,则
| AE |
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 2 |
| a |
| b |
∵AB=AC,∴AE⊥BC,且
| AE |
| BB1 |
| 1 |
| 2 |
| a |
| b |
| c |
∴AE⊥BB1
∴AE⊥平面BB1C1C,AE?平面ABC,
∴平面ABC与平面B1BCC1.
点评:本题考查用空间向量求平面间的夹角,空间向量的夹角与距离求解公式,考查空间想象能力,逻辑思维能力,计算能力,是中档题.
练习册系列答案
相关题目