题目内容

函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

(1)确定函数f(x)的解析式;
(2)试判断f(x)在(-1,1)的单调性,并予以证明;
(3)若f(t-1)+f(t)<0,求实数t的取值范围.
分析:(1)由题意可得,f(-x)=-f(x),代入可求b,然后由f(
1
2
)=
2
5
可求a,进而可求函数解析式
(2)对函数求导可得,f′(x)=
1-x2
(1+x2)2
,结合已知x的范围判断导函数的正负即可判断函数f(x)在(-1,1)上的单调性
(3)由已知可得f(t-1)<-f(t)=f(-t),结合函数在(-1,1)上单调递增可求t的范围
解答:(1)解:∵函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,
∴f(-x)=-f(x)
-ax+b
1+(-x)2
=-
ax+b
1+x2

∴-ax+b=-ax-b
∴b=0
f(
1
2
)=
2
5

1
2
a
1+
1
4
=
2
5

∴a=1
f(x)=
x
1+x2

(2)证明:∵f′(x)=
1-x2
(1+x2)2

∵-1<x<1时,
1-x2
(1+x2)2
>0
∴f(x)在(-1,1)上是增函数
(没有学习导数的也可利用函数的单调性的定义)
(3)解:∵f(t-1)+f(t)<0,且函数为奇函数
∴f(t-1)<-f(t)=f(-t),
由(2)知函数在(-1,1)上单调递增
∴-1<t-1<-t<1
0<t<
1
2
点评:本题主要考查了奇函数的定义的应用及待定系数求解函数的解析式,及函数的单调性在不等式的求解中的应用
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网