题目内容

函数f(x)=lg(10x+1)+ax是偶函数,则实数a=
-
1
2
-
1
2
分析:法一:此题是填空题,不易小题大做,因为f(x)是偶函数,所以对任意的实数x都有f(-x)=f(x)成立,故取x=1,只需验证f(-1)=f(1),解出a的值即可.
法二:直接法来做,但是计算量大,因为f(x)为偶函数,所以f(-x)=f(x)即lg(10-x+1)-ax=lg(10x+1)+ax,解出a即可.
解答:解:由题意知:
法一:
∵f(x)为偶函数
∴f(-1)=f(1)得:lg(10-1+1)-a=lg(10+1)+a
∴a=-
1
2

法二:
∵f(x)为偶函数
∴对任意的实数x都有:f(-x)=f(x)
 即lg(10-x+1)-ax=lg(10x+1)+ax整理得:
?lg(10-x+1)-lg(10x+1)=2ax
?lg10-x=2ax
?102ax=10-x…(1)
如果(1)式对任意的实数x恒成立,则2a=-1
即a=-
1
2

故答案为:-
1
2
点评:本题主要考查函数奇偶性的判断,对填空题来说要学会赋值法做题,要是解答题可能有一定的难度,属于基础题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网