题目内容
已知双曲线x2-
=1的两个焦点分别为F1、F2,点P为双曲线上一点,且∠F1PF2=90°,则△F1PF2的面积等于( )
| y2 |
| 3 |
分析:先根据双曲线方程得到a=1;b=
;c=2;再根据双曲线定义得到|m-n|=2a=2,结合∠F1PF2=90°可得m2+n2=(2c)2=16,求出|PF1|与|PF2|的长,即可得到结论,
| 3 |
解答:解:由x2-
=1⇒a=1;b=
;c=2.
因为P在双曲线上,设|PF1|=m;|PF2|=n,
则|m-n|=2a=2…(1)
由∠F1PF2=90°⇒m2+n2=(2c)2=16…(2)
则(1)2-(2)得:-2mn=-12⇒mn=6
所以,直角△F1PF2的面积:S=
=3.
故选C.
| y2 |
| 3 |
| 3 |
因为P在双曲线上,设|PF1|=m;|PF2|=n,
则|m-n|=2a=2…(1)
由∠F1PF2=90°⇒m2+n2=(2c)2=16…(2)
则(1)2-(2)得:-2mn=-12⇒mn=6
所以,直角△F1PF2的面积:S=
| mn |
| 2 |
故选C.
点评:本题主要考查双曲线的基本性质.在涉及到与焦点有关的题目时,一般都用定义求解.
练习册系列答案
相关题目
已知双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,双曲线在第一象限的图象上有一点P,∠PAB=α,∠PBA=β,∠APB=γ,则( )
| A、tanα+tanβ+tanγ=0 | B、tanα+tanβ-tanγ=0 | C、tanα+tanβ+2tanγ=0 | D、tanα+tanβ-2tanγ=0 |