题目内容

设f(x)是定义在R上的函数,若f(0)=2010且对任意x∈R,有f(x+2)-f(x)≤3.2x,f(x+6)-f(x)≥3.2x,则f(2010)=(  )
分析:先根据f(x+2)-f(x)≤3×2x,f(x+6)-f(x)≥63×2x求得f(x+6)-f(x)=63•2x,然后利用叠加法与等比数列求和公式求出f(2010)的值即可.
解答:解:∵f(x+2)-f(x)≤3•2x
∴f(x+4)-f(x+2)≤3•2x+2=12•2x
f(x+6)-f(x+4)≤3•2x+4=48•2x
∴以上三式相加:f(x+6)-f(x)≤63•2x
又∵f(x+6)-f(x)≥63•2x
∴f(x+6)-f(x)=63•2x
∴f(6)-f(0)=63•20
f(12)-f(6)=63•26
f(18)-f(12)=63•212

f(2010)-f(2004)=63•22004
∴上式相加得:f(2010)-f(0)=63•20+63•26+63•212+…+63•22004
=63•(20+26+212+…+22004
=63•
1-2200426 
1-26

=22010-1
∴f(2010)=f(0)+22010-1=2010+22010-1=22010+2009.
故选C.
点评:本题主要考查了抽象函数及其应用,以及利用夹逼关系求出递推关系和等比数列求和,同时考查了叠加法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网