题目内容
已知函数f(x)=cos(2x-
)+2sin(x-
)cos(x-
)(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-
,
]上的值域.
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-
| π |
| 12 |
| π |
| 2 |
分析:(1)利用两角和与差的正弦函数可将f(x)化简为f(x)=sin(2x-
),从而可求函数f(x)的最小正周期;
(2)x∈[-
,
]⇒2x-
∈[-
,
]⇒f(x)=sin(2x-
)在区间[-
,
]上单调递增,在区间[
,
]上单调递减;从而可求函数f(x)在区间[-
,
]上的值域.
| π |
| 6 |
(2)x∈[-
| π |
| 12 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 12 |
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| π |
| 2 |
解答:解:(1)∵f(x)=cos(2x-
)+2sin(x-
)cos(x-
)
=
cos2x+
sin2x+sin(2x-
)
=
sin2x+
cos2x-cos2x
=
sin2x-
cos2x
=sin(2x-
),
∴f(x)的最小正周期为T=
=π;
(2)由(1)知,f(x)=sin(2x-
),
∵x∈[-
,
],
∴2x-
∈[-
,
],
∴f(x)=sin(2x-
)在区间[-
,
]上单调递增,在区间[
,
]上单调递减;
∴f(x)max=f(
)=sin(2×
-
)=1;
又∵f(-
)=-
<f(
)=
,
∴f(x)min=f(-
)=-
;
∴函数f(x)在区间[-
,
]上的值域是[-
,1].
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
=
| 1 |
| 2 |
| ||
| 2 |
| π |
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
=sin(2x-
| π |
| 6 |
∴f(x)的最小正周期为T=
| 2π |
| 2 |
(2)由(1)知,f(x)=sin(2x-
| π |
| 6 |
∵x∈[-
| π |
| 12 |
| π |
| 2 |
∴2x-
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
∴f(x)=sin(2x-
| π |
| 6 |
| π |
| 12 |
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
∴f(x)max=f(
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
又∵f(-
| π |
| 12 |
| ||
| 2 |
| π |
| 2 |
| 1 |
| 2 |
∴f(x)min=f(-
| π |
| 12 |
| ||
| 2 |
∴函数f(x)在区间[-
| π |
| 12 |
| π |
| 2 |
| ||
| 2 |
点评:本题考查两角和与差的正弦,考查辅助角公式及三角函数的周期,着重考查正弦函数的单调性与最值,属于中档题.
练习册系列答案
相关题目