题目内容
设数列{an}的前n项和为Sn,点(n,(1)求数列{an}的通项公式;
(2)设bn=
,Tn是数列{bn}的前n项和,求使得Tn<
对所有n∈N*都成立的最小正整数m.
解:(1)依题意得
=3n-2,即Sn=3n2-n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a1=S1=3×12-2×1=1=6×1-5.
所以an=6n-5(n∈N*).
(2)由(1)得bn=
=
=
(
-
),
故Tn=
=
[(1-
)+(
-
)+…+(
-
)]=
(1-
).
因此,使得
(1-
)<
(n∈N*)成立的m必须且仅需满足
≤
,即m≤10,故满足要求的最小整数m为10.
练习册系列答案
相关题目