题目内容
已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*)
(1)求数列{an}的通项公式an;
(2)若数列{bn}满足bn=log2(an+2),而Tn为数列{
}的前n项和,求Tn.
(1)求数列{an}的通项公式an;
(2)若数列{bn}满足bn=log2(an+2),而Tn为数列{
| bn |
| an+2 |
(1)当n∈N*时,Sn=2an-2n,①则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)∴
=2.
当n=1 时,S1=2a1-2,则a1=2,当n=2时,a2=6,∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,∴an=2n+1-2,(7分)
(2)由bn=log2(an+2)=log22n+1=n+1,得
=
,
则Tn=
+
+…+
,③
Tn=
+…+
+
,④
③-④,得
Tn=
+
+
+…+
+
=
+
-
=
+
-
-
=
-
∴Tn=
-
(14分)
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)∴
| an+2 |
| an-1+2 |
当n=1 时,S1=2a1-2,则a1=2,当n=2时,a2=6,∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,∴an=2n+1-2,(7分)
(2)由bn=log2(an+2)=log22n+1=n+1,得
| bn |
| an+2 |
| n+1 |
| 2n+1 |
则Tn=
| 2 |
| 22 |
| 3 |
| 23 |
| n+1 |
| 2n+1 |
| 1 |
| 2 |
| 2 |
| 23 |
| n |
| 2n+1 |
| n+1 |
| 2n+2 |
③-④,得
| 1 |
| 2 |
| 2 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 1 |
| 4 |
| ||||
1-
|
| n+1 |
| 2n+2 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 3 |
| 4 |
| n+3 |
| 2n+2 |
∴Tn=
| 3 |
| 2 |
| n+3 |
| 2n+1 |
练习册系列答案
相关题目