题目内容

在△ABC中,sinA=2cosBsinC,则三角形为    三角形.
【答案】分析:由三角形的内角和及诱导公式得到sinA=sin(B+C),右边利用两角和与差的正弦函数公式化简,再根据已知的等式,合并化简后,再利用两角和与差的正弦函数公式得到sin(B-C)=0,由B与C都为三角形的内角,可得B=C,进而得到三角形为等腰三角形.
解答:解:∵A+B+C=π,即A=π-(B+C),
∴sinA=sin(B+C)=sinBcosC+cosBsinC,又sinA=2cosBsinC,
∴sinBcosC+cosBsinC=2cosBsinC,
变形得:sinBcosC-cosBsinC=0,
即sin(B-C)=0,又B和C都为三角形内角,
∴B=C,
则三角形为等腰三角形.
故答案为:等腰三角形
点评:此题考查了三角形形状的判断,涉及的知识有诱导公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键,同时注意三角形内角和定理及三角形内角的范围的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网