题目内容
下列结论:
①若命题p:x2+y2=0,q:xy=0,则?p是?q的充分不必要条件;
②“ab>0”是“方程ax2+by2=c表示椭圆”的必要不充分条件;
③若“a-3<x<a+3”是“x2-4x+3<0”的必要条件,则实数a的取值范围是0<a<4.其中正确的有( )
①若命题p:x2+y2=0,q:xy=0,则?p是?q的充分不必要条件;
②“ab>0”是“方程ax2+by2=c表示椭圆”的必要不充分条件;
③若“a-3<x<a+3”是“x2-4x+3<0”的必要条件,则实数a的取值范围是0<a<4.其中正确的有( )
| A.3个 | B.2个 | C.1个 | D.0个 |
①若命题p:x2+y2=0,q:xy=0,则?p是?q的充分不必要条件,此结论错误,由于?p:x2+y2≠0,?q:xy≠0,可得?p不能推出?q,而?q可以得出?p,故?p是?q的必要不充分条件;
②“ab>0”是“方程ax2+by2=c表示椭圆”的必要不充分条件,由题意,②“ab>0”不一定能得出“方程ax2+by2=c表示椭圆”,而其逆命题是成立的,故②“ab>0”是“方程ax2+by2=c表示椭圆”的必要不充分条件是正确的;
③若“a-3<x<a+3”是“x2-4x+3<0”的必要条件,则实数a的取值范围是0<a<4是错误命题,因为x2-4x+3<0得1<x<3,“a-3<x<a+3”是“x2-4x+3<0”的必要条件,可得
解得0≤a≤4,故实数a的取值范围不是0<a<4,故命题不正确.
综上,②是正确的
故选C
②“ab>0”是“方程ax2+by2=c表示椭圆”的必要不充分条件,由题意,②“ab>0”不一定能得出“方程ax2+by2=c表示椭圆”,而其逆命题是成立的,故②“ab>0”是“方程ax2+by2=c表示椭圆”的必要不充分条件是正确的;
③若“a-3<x<a+3”是“x2-4x+3<0”的必要条件,则实数a的取值范围是0<a<4是错误命题,因为x2-4x+3<0得1<x<3,“a-3<x<a+3”是“x2-4x+3<0”的必要条件,可得
|
综上,②是正确的
故选C
练习册系列答案
相关题目