题目内容
在n×n(n为奇数)的方格表里的每一个方格中,任意填上一个+1或-1,在每一列的下面写上该列所有数的乘积;在每行的右边写上该行所有数的乘积,证明:这2n个乘积的和不等于0.证明:设p1,p2,…,pn是各行数字乘积,q1,q2,…,qn是各列数字乘积,它们都是+1或-1,而应有p1p2…pn=q1q2…qn,所以p1、p2、…、pn、q1、q2…、qn中应有偶数个-1.设为2k个,则其中+1的个数为2(n-k).由于n为奇数,k≠n-k,所以
p1+p2+…+pn+q1+q2+…+qn≠0
练习册系列答案
相关题目