题目内容

函数y=|sinx|-2sinx,x∈[-数学公式数学公式]的值域是


  1. A.
    [-3,-1]
  2. B.
    [-1,3]
  3. C.
    [0,3]
  4. D.
    [-3,0]
B
分析:分-≤x≤0与0≤x≤讨论,利用正弦函数的性质即可求得y=|sinx|-2sinx,x∈[-]的值域.
解答:当-≤x≤0时,y=|sinx|-2sinx=-3sinx∈[0,3],
当0≤x≤时,y=|sinx|-2sinx=-sinx∈[-1,0];
∴函数y=|sinx|-2sinx,x∈[-]的值域是[-1,3].
故选B.
点评:本题考查正弦函数的性质,对自变量x的范围分类讨论,去掉绝对值符号是关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网