题目内容

已知m,n是两条不重合的直线,α,β,γ是三个不重合的平面,给出下列命题:
①若m⊥α,m⊥β,则αβ;
②若α⊥β,β⊥γ,则αβ;
③若m⊥α,n⊥β,αβ,则mn;
④若m⊥α,n⊥β,则αβ.
其中真命题是(  )
A.①和④B.①和③C.②和③D.②和④
由线面间相关定理进行判断,对于①,垂直于同一直线的两个平面平行故若m⊥α,m⊥β,则αβ成立.
对于②两个平面与第三个平面垂直,则两个平面的位置关系可能平行,相交,若α⊥β,β⊥γ,则αβ不一定成立.
对于③,两条直线垂直于两个平行的平面,则两个直线一定平行,故m⊥α,n⊥β,αβ,则mn成立.
对于④,两个平面与两条位置关系不确定的直线垂直,两平面的位置关系无法确定,故若m⊥α,n⊥β,则αβ不一定成立.
综上判断知①③是正确的,故应选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网