题目内容

已知函数f(x)=数学公式(a∈R),若对于任意的X∈N*,f(x)≥3恒成立,则a的取值范围是________.

a≥-
分析:由于x∈N*,可将f(x)=≥3转化为a≥--x+3,再令g(x)=--x+3(x∈N*),利用其单调性可求得g(x)max,从而可得答案.
解答:∵x∈N*
∴f(x)=≥3恒成立?x2+ax+11≥3x+3恒成立,
∴ax≥-x2-8+3x,又x∈N*
∴a≥--x+3恒成立,
∴a≥g(x)max
令g(x)=--x+3(x∈N*),再令h(x)=x+(x∈N*),
∵h(x)=x+在(0,2]上单调递减,在[2,+∞)上单调递增,而x∈N*
∴h(x)在x取距离2较近的整数值时达到最小,而距离2较近的整数为2和3,
∵h(2)=6,h(3)=,h(2)>h(3),
∴当x∈N*时,h(x)min=.又g(x)=--x+3=-h(x)+3,
∴g(x)max=-+3=-
∴a≥-
点评:本题考查函数恒成立问题,依题意得到a≥--x+3是关键,考查转化思想,构造函数的思想,考查函数的单调性的应用,综合性强,思维度深,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网