题目内容

如图,四棱锥P-ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.
(1)求作平面PAD与平面PBC的交线,并加以证明;
(2)求PA与平面PBC所成角的正弦值;
(3)求平面PAD与平面PBC所成锐二面角的正切值.
精英家教网
(1)过P作BC的平行线L即为所求.(2分)
精英家教网

因为BCAD,BC?面PAD,AD⊆面PAD,
所以BC平面PAD,
因为平面PAD∩平面PBC=L,
所以BCL  (5分)
(2)设PD=AD=1,设A到平面PBC的距离为h,
则由题意PA=PB=PC=
2
,S△ABC=
1
2
×
3
×
1
2
=
3
4

在等腰△PBC中,可求S△PBC=
1
2
×1×
(
2
)
2
(
1
2
)
2
=
7
4

∴V A-PBC=V P-ABC
1
3
×h×
7
4
=
1
3
×1×
3
4
,h=
21
7

∴sinθ=
h
PA
=
21
7
2
=
42
14

(3)由题意可知,PA=PB=PC=
2
,取BC中点M,连PM、DM,则PM⊥BC,
因为PD⊥BC,又BCL,
所以∠DPM为所求.(8分)
DM=DC•sin60°=
3
2

在Rt△PDM中,tan∠DPM=
DM
PD
=
3
2
1
=
3
2
(12分)
即平面PAD与平面PBC所成锐二面角的正切值为:
3
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网