题目内容
函数f(x)=①若P∩M=∅,则f(P)∩f(M)=∅;
②若P∩M≠∅,则f(P)∩f(M)≠∅;
③若P∪M=R,则f(P)∪f(M)=R;
④若P∪M≠R,则f(P)∪f(M)≠R.
A.1个
B.2个
C.3个
D.4个
【答案】分析:由函数的表达式知,可借助两个函数y=x与y=-x图象来研究,分析可得答案.
解答:
解:由题意知函数f(P)、f(M)的图象如图所示.
设P=[x2,+∞),M=(-∞,x1],
∵|x2|<|x1|,f(P)=[f(x2),+∞),
f(M)=[f(x1),+∞),则P∩M=∅.
而f(P)∩f(M)=[f(x1),+∞)≠∅,故①错误.
同理可知②正确.设P=[x1,+∞),M=(-∞,x2],
∵|x2|<|x1|,则P∪M=R.
f(P)=[f(x1),+∞),f(M)=[f(x2),+∞),
f(P)∪f(M)=[f(x1),+∞)≠R,
故③错误.
④若P∪M≠R,则f(P)∪f(M)≠R.这是不对的 若P={非负实数},M={正实数}
则f(P)={非负实数},f(M)={负实数}
则f(P)∪f(M)=R.
故④错
故选A
点评:考查对题设条件的理解与转化能力,本题中题设条件颇多,审题费时,需仔细审题才能把握其脉络,故研究时借用两个函数的图象,借助图形的直观来来帮助判断命题的正误,以形助数,是解决数学问题常用的一种思路.
解答:
设P=[x2,+∞),M=(-∞,x1],
∵|x2|<|x1|,f(P)=[f(x2),+∞),
f(M)=[f(x1),+∞),则P∩M=∅.
而f(P)∩f(M)=[f(x1),+∞)≠∅,故①错误.
同理可知②正确.设P=[x1,+∞),M=(-∞,x2],
∵|x2|<|x1|,则P∪M=R.
f(P)=[f(x1),+∞),f(M)=[f(x2),+∞),
f(P)∪f(M)=[f(x1),+∞)≠R,
故③错误.
④若P∪M≠R,则f(P)∪f(M)≠R.这是不对的 若P={非负实数},M={正实数}
则f(P)={非负实数},f(M)={负实数}
则f(P)∪f(M)=R.
故④错
故选A
点评:考查对题设条件的理解与转化能力,本题中题设条件颇多,审题费时,需仔细审题才能把握其脉络,故研究时借用两个函数的图象,借助图形的直观来来帮助判断命题的正误,以形助数,是解决数学问题常用的一种思路.
练习册系列答案
相关题目