题目内容
A.(不等式选讲) 不等式|x-1|+|x+3|>a,对一切实数x都成立,则实数a的取值范围为______.
B.(几何证明选讲)如图,P是圆O外一点,过P引圆O的两条割线PAB、PCD,PA=AB=
,CD=3,则PC=______.
C.(极坐标系与参数方程)极坐标方程ρsin2θ-2•cosθ=0表示的直角坐标方程是______.
B.(几何证明选讲)如图,P是圆O外一点,过P引圆O的两条割线PAB、PCD,PA=AB=
| 5 |
C.(极坐标系与参数方程)极坐标方程ρsin2θ-2•cosθ=0表示的直角坐标方程是______.
A.不等式|x-1|+|x+3|>a恒成立时,a小于左边的最小值
∵|x-1|+|x+3|≥|(x-1)-(x+3)|=4,
∴a<4,得实数a的取值范围为(-∞,4)
B.∵PAB、PCD是圆O的两条割线,
∴PA•PB=PC•PD,得PA(PA+AB)=PC(PC+CD)
代入题中数据,得
(
+
)=PC(PC+3),解之得PC=2(舍-5)
C.极坐标方程ρsin2θ-2•cosθ=0两边都乘以ρ,得ρ2sin2θ-2•ρcosθ=0
∵ρsinθ=y,ρcosθ=x
∴原极坐标方程可化为:y2-2x=0,即y2=2x
故答案为:(-∞,4),2,y2=2x
∵|x-1|+|x+3|≥|(x-1)-(x+3)|=4,
∴a<4,得实数a的取值范围为(-∞,4)
B.∵PAB、PCD是圆O的两条割线,
∴PA•PB=PC•PD,得PA(PA+AB)=PC(PC+CD)
代入题中数据,得
| 5 |
| 5 |
| 5 |
C.极坐标方程ρsin2θ-2•cosθ=0两边都乘以ρ,得ρ2sin2θ-2•ρcosθ=0
∵ρsinθ=y,ρcosθ=x
∴原极坐标方程可化为:y2-2x=0,即y2=2x
故答案为:(-∞,4),2,y2=2x
练习册系列答案
相关题目