题目内容
已知函数f(x)=2x+k•2-x,k∈R.
(1)若函数f(x)为奇函数,求实数k的值;
(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.
(1)若函数f(x)为奇函数,求实数k的值;
(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.
(1)∵函数f(x)=2x+k•2-x为奇函数,∴f(-x)=-f(x)
∴2-x+k•2x=-(2x+k•2-x)
∴(1+k)+(k+1)22x=0恒成立
∴k=-1
(2)∵对任意的x∈[0,+∞)都有f(x)>2-x成立,
∴2x+k•2-x>2-x成立
∴1-k<22x对任意的x∈[0,+∞)成立
∵y=22x在[0,+∞)上单调递增
∴函数的最小值为1
∴1-k<1
∴k>0
∴2-x+k•2x=-(2x+k•2-x)
∴(1+k)+(k+1)22x=0恒成立
∴k=-1
(2)∵对任意的x∈[0,+∞)都有f(x)>2-x成立,
∴2x+k•2-x>2-x成立
∴1-k<22x对任意的x∈[0,+∞)成立
∵y=22x在[0,+∞)上单调递增
∴函数的最小值为1
∴1-k<1
∴k>0
练习册系列答案
相关题目