题目内容
(2011•许昌一模)已知函数f(x)=
sin(2x-
)+2sin2(x-
),x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[-
,
]上的最小值和最大值.
| 3 |
| π |
| 6 |
| π |
| 12 |
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[-
| π |
| 4 |
| π |
| 4 |
分析:(Ⅰ)f(x)解析式最后一项利用二倍角的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出;
(Ⅱ)由x的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值与最小值.
(Ⅱ)由x的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值与最小值.
解答:解:(Ⅰ)∵f(x)=
sin(2x-
)+1-cos(2x-
)=1+2sin(2x-
),
∵ω=2,∴函数f(x)的最小正周期为π;
(Ⅱ)∵x∈[-
,
],∴2x-
∈[-
,
],
∴-1≤sin(2x-
)≤
,
∴当x∈[-
,
]时,f(x)max=2,f(x)min=-1.
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
∵ω=2,∴函数f(x)的最小正周期为π;
(Ⅱ)∵x∈[-
| π |
| 4 |
| π |
| 4 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 6 |
∴-1≤sin(2x-
| π |
| 3 |
| 1 |
| 2 |
∴当x∈[-
| π |
| 4 |
| π |
| 4 |
点评:此题考查了两角和与差的正弦函数公式,三角函数的周期性及其求法,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目