题目内容
(2012•台州一模)在直角△ABC中,AB=2,AC=1,点E,F分别在直角边AB,AC上(不含端点),把△AEF绕直线EF旋转,记旋转后A的位置为A',则四棱锥A'-BEFC的体积的最大值为
.
2
| ||
| 27 |
2
| ||
| 27 |
分析:根据已知条件,判断出当平面AEF旋转到与平面BEFC垂直的位置时四棱锥A'-BEFC的高最大,
解答:解:设AE=x,AF=y,则四边形BEFC的面积S=1-
•xy,
四棱锥A'-BEFC的高h=
四棱锥A'-BEFC的体积V=
×(1-
•xy)×
≤
×(1-
•xy)×
=
×(1-
•xy)×
(当x=y时等号成立)
假设
=t,则0<t<
,
则f(t)=
(1-
t2)t=-
t3+
t
故f′(t)=-
t2+
=0,即t2=
时f(t)有最大值
此时四棱锥A'-BEFC的体积的最大值为Vmax=
(1-
×
)×
=
故答案为
| 1 |
| 2 |
四棱锥A'-BEFC的高h=
| xy | ||
|
四棱锥A'-BEFC的体积V=
| 1 |
| 3 |
| 1 |
| 2 |
| xy | ||
|
| 1 |
| 3 |
| 1 |
| 2 |
| ||
|
| ||
| 6 |
| 1 |
| 2 |
| xy |
假设
| xy |
| 2 |
则f(t)=
| ||
| 6 |
| 1 |
| 2 |
| ||
| 12 |
| ||
| 6 |
故f′(t)=-
| ||
| 4 |
| ||
| 6 |
| 2 |
| 3 |
此时四棱锥A'-BEFC的体积的最大值为Vmax=
| ||
| 6 |
| 1 |
| 2 |
| 2 |
| 3 |
|
2
| ||
| 27 |
故答案为
2
| ||
| 27 |
点评:本题考查的知识点是棱锥的体积,其中正确由AE和AF的长度,得到体积,以及利用导数求出最值,是解答本题的关键.
练习册系列答案
相关题目