题目内容
求证:16<
<17.
| 80 |
| k=1 |
| 1 | ||
|
分析:利用放缩法,可得
<2(
-
),
>2(
-
),再累加,即可证得结论.
| 1 | ||
|
| k |
| k-1 |
| 1 | ||
|
| k+1 |
| k |
解答:证明:∵
=
<
=2(
-
),
=
>
=2(
-
)
∴2
(
-
)<
<2
(
-
)
∴2(
-1)<
<2(
-0)
∴16<
<17.
| 1 | ||
|
| 2 | ||||
|
| 2 | ||||
|
| k |
| k-1 |
| 1 | ||
|
| 2 | ||||
|
| 2 | ||||
|
| k+1 |
| k |
∴2
| 80 |
| k=1 |
| k+1 |
| k |
| 80 |
| k=1 |
| 1 | ||
|
| 80 |
| k=1 |
| k |
| k-1 |
∴2(
| 81 |
| 80 |
| i=1 |
| 1 | ||
|
| 80 |
∴16<
| 4 |
| k=1 |
| 1 | ||
|
点评:本题考查不等式的证明,考查放缩法的运用,正确运用放缩法是关键.
练习册系列答案
相关题目