题目内容
侧棱长为
的正三棱锥V-ABC的侧棱间的夹角为40°,过顶点A作截面AEF,截面AEF的最小周长为
- A.

- B.6a
- C.4a
- D.

B
分析:画出几何体的图形,推出截面周长最小值的情形,确定展开图的有关的角,利用余弦定理求出距离即可.
解答:
解:如图三棱锥以及侧面展开图,要求截面AEF的周长最小,就是侧面展开图中AG的距离,
因为侧棱长为
的正三棱锥V-ABC的侧棱间的夹角为40°,∠AVG=120°,
所以由余弦定理可知AG2=VA2+VG2-2VA•VGcos120°
=
=3
.
AG=6a.
故选B.
点评:本题是中档题,考查几何体的侧面展开图距离的最小值问题,余弦定理的应用,考查空间想象能力,计算能力,转化思想.
分析:画出几何体的图形,推出截面周长最小值的情形,确定展开图的有关的角,利用余弦定理求出距离即可.
解答:
因为侧棱长为
所以由余弦定理可知AG2=VA2+VG2-2VA•VGcos120°
=
=3
AG=6a.
故选B.
点评:本题是中档题,考查几何体的侧面展开图距离的最小值问题,余弦定理的应用,考查空间想象能力,计算能力,转化思想.
练习册系列答案
相关题目
侧棱长为
[
]|
A . |
B .6a |
|
C . |
D .9a |