题目内容
对于数列{an},定义{△an}为数列{an}的一等差数列,其中△an=an+1-an(n∈N*),
(1)若数列{an}通项公式an=
n2-
n(n∈N*),求{△an}的通项公式;
(2)若数列{an}的首项是1,且满足△an-an=2n,①证明:数列{
}为等差数列;②求{an}的前n项和Sn.
(1)若数列{an}通项公式an=
| 5 |
| 2 |
| 13 |
| 2 |
(2)若数列{an}的首项是1,且满足△an-an=2n,①证明:数列{
| an |
| 2n |
解(1)依题△an=an+1-an,
∴△an=[
(n+1)2-
(n+1)]-(
n2-
n)=5n-4,
(2)i)由△an-an=2n,即an+1-an-an=2n,即an+1=2an+2n,
∴
=
+
,
∴
-
=
.a1=1,
=
,
所以数列{
}是以
为首项,
为公差的等差数列.
ii)由i)得
=
+
(n-1)=
,
∴an=
•2n=n•2n-1,
∴Sn=a1+a2+a3+an=1•20+2•21++n•2n-1,①
∴2Sn=1•21+2•22++n•2n②
①-②得-Sn=1+2+22++2n-1-n•2n=
-n•2n,
∴Sn=n•2n-2n+1=(n-1)•2n+1.
∴△an=[
| 5 |
| 2 |
| 13 |
| 2 |
| 5 |
| 2 |
| 13 |
| 2 |
(2)i)由△an-an=2n,即an+1-an-an=2n,即an+1=2an+2n,
∴
| an+1 |
| 2n+1 |
| an |
| 2n |
| 1 |
| 2 |
∴
| an+1 |
| 2n+1 |
| an |
| 2n |
| 1 |
| 2 |
| a1 |
| 2 |
| 1 |
| 2 |
所以数列{
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
ii)由i)得
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
∴an=
| n |
| 2 |
∴Sn=a1+a2+a3+an=1•20+2•21++n•2n-1,①
∴2Sn=1•21+2•22++n•2n②
①-②得-Sn=1+2+22++2n-1-n•2n=
| 1-2n |
| 1-2 |
∴Sn=n•2n-2n+1=(n-1)•2n+1.
练习册系列答案
相关题目